
AD-A253 947

MTL TR 92-32 AD

INSTRUMENT DRIVER FOR GENERAL
PURPOSE INTERFACE BUS (IEEE-488)

BRADLEY M. TABER III and PATRICK J. SINCEBAUGH
MATERIALS TESTING AND EVALUATION BRANCH

DTICS ELECT"r'
May 1992 AUG 111992 :1

00rginal ootsr, *ajar-.
platesI All Db'tC zroet-

Approved for public release; distribution unlimited. Ions will be SA bllek =
.-41t 6o

92 8 7 095
92-22460

LADORATORY COMMANO U.S. ARMY MATERIALS TECHNOLOGY LABORATORY
mImS "muijoy um R yny Watertown, Maschusetts 02172-0001

DISCLAIMER

The authors and publisher make no warranty of any kind, expressed or implied, with regard
to the use of these instrument drivers. In no event will the authors or the U.S. Department of
Defense or its affiliates be liable to the user or any third party for direct, indirect, special,
incidental, or consequential damages arising out of the use of this software package or the manual.

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other
authorized documents.

Mention of any trade names or manufacturers in this report
shall not be construed as advertising nor as an official
indorsement or approval of such products or companies by
the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed.
Do not return it to the originator.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE.

UNCLASSIFIED
S1CURITY CLASSIFICATION OF THIS PAGE (*m. Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUNGER 2. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG HUMSER

MTL TR 92-32

4. TITLE. (and Subtitle) S. TYPE OF REPORT & PERIOO COVERED

INSTRUMENT DRIVER FOR GENERAL PURPOSE Final Report

INTERFACE BUS (IEEE-488) *. PERFORMING ORG. REPORT NUMUER

7. AUTHOR() I. CONTRACT OR GRANT NUMBER(S)

Bradley M. Taber III and Patrick J. Sincebaugh

9. PERFORMING ORGANIZATION NAME AND AOORESS 10. PROGRAM ELEMENT. PROJECT. TASK

U.S. Army Materials Technology Laboratory AREA& WORK UNIT NUNGERS

Watertown, Massachusetts 02172-0001 D/A Project IL16105AH84

ATTN: SLCMT-MRM

I. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE

U.S. Army Laboratory Command May 1992
2800 Powder Mill Road 13. NUMSER OF PAGES

Adelphi, Maryland 20783-1145 49
14. MONITORING AGENCY NAME & AOORESS(il dilerent from Conifdllng Office) IS. SECURITY CLASS. (of this report)

Unclassified
ISO. OECLASSIFICATION/OOWNGRAOING

SCHEDULE

16. DISTRIBUTION STATEMENT (u thl Report)

Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of he rh bstract entered In Black 20. it diffent from epfort)

II. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue an reverse side it necesary and ideltify bv block nuxib.,)

General purpose interface bus (GPIB) Instrumentation
Interfaces Software driver
Data acquisition Automation

20. AUSTRACT (Continue an reverse side Of necessary and Identufy bry block numb.,o)

(SEE REVERSE SIDE)

DO , s, 1473 EoT,oN, OF I NOV s I OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF T,4IS PAGE When Data Eneeredl

UNCLASS IF! ED
irctitre Y CL ASSI PIC AtO r om of wis* PAGt ,~ qa ate .- al

Biuck No. 20

ABSTRACT

Laboratory automation is invaluable to scientists, engineers, and techni-
cians. It provides a mechanism by which many processes can be interactively
controlled. A popular method of connecting and controlling laboratory instrumen-
tation is through the General Purpose Interface Bus (GPIB). The Institute of
Electrical and Electronics Engineers (IEEE) standardized this bus under IEEE-488.
The objective of this project was to study the IEEE--488 and write instrument
drivers in C++ for the GPIB and the Tektronix 2430A Digital Oscilloscope. These
drivers contain functions for initialization, command control, and data acquisi-

tion. The first section of this paper discusses the IEEE-488 and provides perti-

nent technical information. The second section of this paper is an instruction
manual for the use of the GPIB and Tektronix oscilloscope instrument drivers.
Portions of an Input/Output (I/O) module are included to provide a graphical rep-

resentation for the data acquired with the GPIB and Tektronix modules. A test

program is presented which demonstrates the use of these modules.

These drivers will be specifically used for ultrasonic data acquisition
capabilities for nondestructive testing of materials. The ultrasonic data is
generated by an ultrasonic transducer sending a sound pulse through a material.

The reflected signal is displayed on a digitizing oscilloscope. The displayed

signal must be acquired by the computer-for further processing. This system
will eventually incorporate robotics for unattended material testing. Human

interaction will be kept to a minimum so it will be very important that errors

are appropriately handled.

UNCLASSIFIED

SECU aV C;AiS-sICAVION 0 ?bIe 044(rW.. 6.im F,.001

CONTENTS

Page

SECTION 1: IEEE-488 REFERENCE PAPER

INTRODUCTION TO THE IEEE-488 I
HARDWARE INSTALLATION 1
CONNECTING DEVICES USING THE GPIB. 3
IEEE-488 INTERFACE COMMANDS 4
PROGRAMMING THE GPIB BOARD 5

SECTION 2: INSTRUMENT DRIVER INSTRUCTION MANUAL

GENERAL INFORMATION 8
GPIB MODULE 9
TEKTRONIX MODULE 13
DISPLAY MODULE AND TEST PROGRAM 13

CONCLUSION. 14

APPENDIX A: IEEE-488 PIN CONNECTIONS AND DIAGRAM 18
APPENDIX B: SUPPLEMENTAL GPIB HARDWARE 21
APPENDIX C: KEITHLEY METRABYTE IE-488 ERROR FLAG CODES 22
APPENDIX D: KEITHLEY METRABYTE IE-488 INTERFACE COMMANDS 23
APPENDIX E: SOURCE CODE 24

BIBLIOGRAPHY 46

Accesion For
. QUA.,7 - B NTIS CRA&I

DTIC TAl-3UL]anrnou d '-'

Justification. . .
By

------.--.-.-.--..

AvailabilAity C. s "

D1st J Spciai

A-1

SECTION 1
IEEE488 REFERENCE PAPER

INTRODUCTION TO THE IEEE-488

Laboratory researchers have shown great increases in productivity by utilizing automation.
As the potential for automated systems became apparent, it was clear that a standard communications
interface was necessary. Problems were occurring because the interfacing capabilities would vary
between manufacturers. This made most automated systems very customized and non-portable.
Hewlett-Packard helped industry overcome this problem by developing the Hewlett-Packard Interface
Bus (HPIB) in the early 1970's. This interface bus was widely used throughout industry, and in
1975 became standardized by the Institute of Electrical and Electronic Engineers under Standard
IEEE-488. In 1978 the standard was updated with minor revisions. The General Purpose Interface
Bus (GPIB), the ANSI MCI. 1-1975, and the HPIB are synonymous with the IEEE-488. In this
paper, IEEE-488 is used to refer to the standard, and the rules and syntax of communication. GPIB
is used to refer to the physical bus or physical devices. The European standards IEC-625.1 and
B.S.6146 are very similar to the IEEE-488, the major difference being the type of connector.

The IEEE-488 communications protocol has some distinct advantages, and disadvantages,
over more common forms of input/output (I/O) communications such as serial and parallel ports.
The major difference is that the GPIB is a bus, rather than a port. The bus protocol allows for the
connection of up to fifteen devices, each individually or group addressable. It also allows for a
device other than a specific computer to be the active controller, and any device can be set as a
talker, listener, or idle. In contrast, there are typically only two or three serial and parallel ports in
a PC or workstation. Although there are devices available which will allow a greater number of
serial and parallel devices to be attached to one computer, this is usually expensive and inefficient.
Because the GPIB is specifically made for instrumentation I/O, it has been a very popular
alternative. Most laboratory equipment and instrumentation, and many computer peripherals, such
as pen plotters, have a GPIB connection along with a serial or parallel port.

The GPIB board, however, must be programmed for the specific device which it will control.
In most cases, drivers have to be built partially in a low level language to provide routines to
communicate with the bus and to control the device. Many GPIB boards and devices have available
drivers to add to existing code. These drivers often do not fit the user's requirements or are very
difficult to interface with existing code because of language incompatibility problems. Many of the
included drivers are written in BASIC programming language. The slow speed at which BASIC
programs execute make these drivers inappropriate for many real-time applications.

HARDWARE INSTALLATION

The GPIB interface board used for this project was the Keithley MetraByte IE-488 General
Interface I/O expansion board. It is designed to plug into an open slot inside a PC compatible
computer. It fully complies with the IEEE-488 1978 standard.

The IE-488 board requires a free 16 kilobyte block of adapter memory to load a relocatable

I

12 kilobyte ROM interpreter and 4 kilobyte static RAM. The interpreter is a block of code that
handles the initialization and protocol functions required to use the bus. The interpreter accepts all
string coded commands and secondary commands in conventional high-level IEEE-488 command
syntax, which will be discussed later. The interpreter must reside in a free portion of the PC's
adapter memory. The memory address is selected by setting the appropriate D.I.P. switch on the
GPIB board. The user must make sure that the set address does not conflict with any other devices
connected to the computer. Figure 1 illustrates the hardware configuration of the Keithley Metrabyte
IE-488 GPIB board.

Once an IEEE-488 command is sent to the ROM interpreter, the interpreter sends the
necessary data out onto the GPIB through the I/O port address. This address must also be set on the
board via a D.I.P. switch. This address performs the same function as the more common parallel
and serial port addresses. The IE-488 Manual suggests selecting the base address at H300 or H310,
although any other valid, non-conflicting address will work.

pCMTML ! .RAM .

ACMI
A2K AM" NMEN

A14 a Deco=

A

S..

Figure 1. Hardware Diagram of Keithley Metrabyte IE-488 Board.
(Courtesy of Keithley Metrabyte)

If direct memory access (DMA) is going to be used, an appropriate interrupt and DMA
channel must be specified by D.I.P. switches on the board. Care must also be taken with these to
ensure that there are no conflicts with the operating system or another peripheral board.

The computer's technical reference manual should be consulted if there are any questions
concerning the above parameter settings. The GPIB board manual will also assist in the setting of
the appropriate parameters. The settings for the b--e address, memory address, interrupt vectors,
and DMA channel should be noted so that the proper parameters can be set in the header file for the
GPIB module. Although the discussion above pertained to the Keithley Metrabyte IE-488 GPIB
board, a similar hardware setup is required for most other GPIB boards.

2

CONNECTING DEVICES USING THE GPIB

Devices may be connected to the GPIB in a linear configuration, a star configuration, or a
combination of both. In a linear connection, the GPIB cable is connected from one device to the
next, in a serial fashion (Figure 2). In a star configuration one end of all the GPIB connections are
connected to one device (Figure 3). Each device is connected to the bus with either a GPIB or IEC-
625-1 cable. The GPIB cable has a 24 pin connector. This connector is designed so that multiple
cables can be connected "piggy-back" style. The pin diagram for this connector is shown in
Appendix A.

t DEVIC DEVIDEVEVCE
2 3

Figure 2. GPIB Linear Configuration.

DEVICE DEVICE

2 1
3

DEVICE DEVICE
4 N

Figure 3. GPIB Star Configuration.

Devices that are interfaced to the GPIB can be classified into three categories:

1. Listeners - A listener is a device that receives commands and data via the bus.

2. Talkers - A talker is a device that sends data via the bus, to another device that is
designated by the controller as a listener. Only one device on the bus is allowed to talk
at any given time.

3

3. Controllers - The controller is a device that manages the interface bus by controlling the
flow of commands and data to and from the other devices connected to the bus. Thus,
the controller is both a listener and a talker. Only one active controller is allowed at
any given time.

Many devices are designated as both talkers and listeners. For example, if only part of a
waveform is of interest, the oscilloscope will first behave as a listener to receive the setup
parameters for the window size. The scope will then become a talker as it passes the digitized signal
to the controller.

The IEEE-488 specifications allow up to 15 devices to be connected to the bus, including the
controller. Because of capacitive and inductive restrictions, the total length of the network should
not exceed 20 meters. If a longer network is needed, an GPIB extender may be used. It is
recommended that a device be connected for every 2 meters of cable, and that two-thirds of the
devices be powered on. Appendix B lists some GPIB peripherals which may enhance the
performance of an automated instrument system.

Each device connected to the bus must have a unique primary address. Many devices have a
factory default address ranging from 0 to 30. However, this address can usually be changed by the
user in different ways, depending upon the specific equipment in use. Some devices have switches
or jumpers on the device which can be changed manually, while others may be changed from the
instrument panel. Some devices will also have a secondary address, ranging from 96 - 126. This
address will be used to control a specific function of that device. The secondary address is usually
preset at the factory. It does not have to be unique, since the primary address must first be
accessed. Not all devices support secondary addressing.

IEEE-488 INTERFACE COMMANDS

The commands that are interpreted by the GPIB board can be classified into two categories:
universal commands and addressed commands. Below is a detailed description of each:

I. UNIVERSAL COMMANDS - A universal command will affect all of the devices that are
connected, as long as they are capable of interpreting the command. There are five universal
commands supported:

1. Serial Poll Enable (SPE) - Enables serial poll mode for all devices on the bus.

2. Serial Poll Disable (SPD) - Disables serial poll mode for all devices on the bus.

3. Parallel Poll Unconfigure (PPU) - All devices on the bus will be reset so that they are in
an idle state. They will not be able to respond to a parallel poll.

4. Local Lockout (LLO) - Disables the front panel control for all devices on the bus.

5. Device Clear (DCL) - All devices on the bus will return to a predefined state. This
predefined state is defined by the device.

4

II. ADDRESSED COMMANDS - An addressed cc-nmand will affect only those devices which are
addressed (designated as listeners). The controller selects which devices will. receive the
command. There are seven addressed commands supported:

1. Take Control (TCT) - The active controller will transfer bus control to the addressed
device.

2. Parallel Poll Configure (PPC) - The addressed devices will be configured to respond to a
parallel poll. This is done by assigning the 8 DIO lines of the bus for this purpose.

3. Select Device Clear (SDC) - The addressed devices will be reset to their predefined states.
This predefined state is determined in the factory.

4. Go To Local (GTL) - The addressed devices will return 'o local control (they will be
controlled by front panel operation).

5. Group Execute Trigger (GET) - The addressed devices will execute a pre-programmed
action. This enables all of the selected devices on the bus to be triggered simultaneously.

6. UNTalk (UNT) - The current talker will be unaddressed. This command may not be
necessary because when another device is designated as a talker, the previous talker is
automatically unaddressed.

7. UNListen (UNL) - The bus is cleared of all listeners.

The Keithley Metrabyte IE-488 interpreter is capable of implementing all twelve of these
commands. These commands, referred to as messages, are shown in Appendix D.

PROGRAMMING THE GPIB BOARD

The IEEE-488 standard does not mandate any particular programming language to be used
with the GPIB board. However, there are certain formats that need to be followed. When
establishing communication with the GPIB board, the following call statement is used:

CALL func(command, variable, flag, basadr)

where:

flnw is the name of the function that is to be called.

command is the string command that will determine what action the board will perform. This
parameter will be decoded by the ROM interpreter on the GPIB board.
The command must be sent to the board as a STRING in the following format:

*cmd dev).sec, dev2.sec, ..., devn.sec[image]"

5

where:
and is the IEEE-488 command being sent.
devn is a user selectable device number.
sec is the devices secondary address (optional).
[image] is the image specifier or terminator (optional). The specifier is the variable

field to which the acquired data is stored. The terminator allows the user to pick
the type of string termination (EOI, carriage return, line feed, etc.). Details of
these can be found in the GPIB board manual. The instrument driver described in
this paper solely uses the [$1 image specifier. This image specifier inputs the
acquired data as a character string in memory. This allows for the maximum
versatility and ease of programming since the character string can be easily
transformed into an integer or float array if necessary. The included drivers use the
default terminator: EOI.

variable is the command that is input to or output from the device. Data is transferred as
specified by the image specifier and terminator. The format of this command is dependent
upon the individual device. Consult the device's instruction manual for syntax
requirements.

flag is a parameter that is used to report the status of an operation. If an error has occurred,
this parameter will be set to the appropriate error number. The Keithley Metrabyte
IE-488's error handling mechanism will identify 23 distinct types of messages grouped into
three categories: data transfer, hardware, and format. The flag return codes for the IE-488
board are shown in Appendix C.

basadr is a variable that contains the address of the ROM interpreter.

Before sending any commands to a device, the GPIB board must be initialized. This is done
by sending the appropriate command parameter to the GPIB board using the calling procedure
discussed above. For example, when using the Keithley Metrabyte IE-488 the COMMAND string
is:

'SYSCON MAD = dev, CIC = (0/1/2/3), NOB = (1/2), BAO=&Hdddd (BAl=&Hdddd)"

where:

MAD is the PC device address.
dev is the address of the device (0 - 30).
CIC is the controller in charge, 0=none, I =board #1, 2=board #2.
NOB is the number of boards (1 or 2).
BAO is the base address for board #1.
BAI is the base address for board #2.

6

The data string contained in variable is irrelevant when sending this command because no
communication is being made with a device. For correct compilation of the code, however, a
pointer to type string must be passed in the parameter list. After receiving this command, the board
will be ready to accept further instructions.

7

SECTION 2
INSTRUMENT DRIVER INSTRUCTION MANUAL

GENERAL INFORMATION

The instrument driver code was written in Borland C++, Version 2.0. It is intended for a
PC compatible 386 or 486 computer running MS-DOS 3.30 or higher, with at least one megabyte of
memory, although it may run on other configurations. The software was modularly written and
contains descriptive function names and comments describing the use of each function. There were
two main modules coded: a GPIB module and a Tektronix module. The GPIB module contains the
necessary functions to utilize the GPIB board with any device. It is in no way dependent upon any
functions in the Tektronix module. The Tektronix module is designed to be layered on top of the
GPIB module (see Figure 4). It accesses GPIB functions. To provide communication capabilities
with additional devices, modules can be written similar to the Tektronix module. A small display
module is provided to demonstrate the correct operation of the GPIB and Tektronix modules.

USER CODE

DISPLAY.CPP, GPIBMAIN.CPP

TEK243OA.CPP: TEKTRONIX MODULE

GPIB.CPP: GPIB MODULE

CALLGPIB.ASM: INTERPRETER INTERFACE

HARDWARE (METRABYTE)

Figure 4. Layered Design of Driver Code.

To utilize these drivers, the user must include gpib.h and tek2430A.h in the program, compile
gpib.cpp and tek2430A.cpp, assemble callgpib.asm and link all object files with the client code to
produce an executable file. The user's code in the main program will then have access to all the
GPIB and Tektronix functions described below. The display module, display.cpp and test program,
gpibmain.cpp are included to demonstrate how the user can write code to access the functions
provided by these drivers. The test program initializes the GPIB board and oscilloscope, sets the
appropriate parameters on the oscilloscope, sends several queries to the oscilloscope, and then
acquires and graphically displays the signal data.

8

Before compiling and linking the code, the user should set the default parameters for the
board and the device. In the beginning of gpib.h, the user must define the interrupt request, DMA
channel, PC device address, controller in charge, number of boards, I/O addresses, and ROM
interpreter memory address of the GPIB board. In addition, the user must specify the length of the
character array which will hold the commands to the GPIB board and the device. Below are the
default settings of these parameters. The user should make any necessary changes:

#define DEFIREQ 2
#define DEF DMA 3
#define DEFMAD 3
#define DEFCIC 1
#define DEFNOB 1
#define DEFBAO 300
#define DEFBA1 0
#define DEFROM ADDR MKFP(xC800,O000)
#define 1Jo tRLEN 80

In the Tektronix module the user must define the maximum number of points which can be
acquired from the oscilloscope, and the device address of the oscilloscope. As with any GPIB
device connected to the bus, the user must select a unique device number from the control panel of
the oscilloscope. The default setting for this software is:

#define MAX_PTS 1024
#define DEFGPIB_ADDR 15

GPIB MODULE

The GPIB module consists of the assembly language routine, callgpib.asm, along with the
header file gpib.h and the implementation file gpib.cpp. The actual communication to the IEEE-488
interpreter is done through callgpib.asm. The addresses of the outgoing GPIB command structure,
the device incoming/outgoing data structure, and the IEEE-488 ROM interpreter are parameters for
this routine. This routine arranges these pointers along with an error flag pointer on the stack as
illustrated in Figure 5.

It should also be noted that the command and data structure for the IEEE-488 interpreter have
the following format:

class gpibdat(
char length;
char *datptr;

,7 member functions

9

SP + 6 4- GPIB Command Structure Pointer

SP + 4 4 Device Data Structure Pointer

SP + 2 4- Return Error Flag Pointer

SP 4 Interpreter Base Address Pointer

Figure 5. Location of Variables on the Stack.

This means that the command and data pointers on the stack will point to the length of the string.
Directly following the length will be a pointer to the actual string somewhere else in memory. The
form of the callgpib routine is as follows:

unsigned int flag = callgpib(gpibcmd, dev cmd dat, DEFROMADDR);

where gpibcmd is the command being sent to the GPIB board, and dev cmddat is the command
being sent to the device or data coming from the device. Both are of class gpibdat.
DEFROM ADDR is the address of the IEEE-488 ROM interpreter. The C + + code incorporates
constructors and destructors for class gpibdat which dynamically allocates space for the data string.

Another class, class gpib, has the functions necessary for operation of the GPIB board. This
class must be initialized with the appropriate parameters. If the default parameters accurately reflect
the system configuration, these can be passed to the constructor as parameters. The main program
illustrates the manner in which this is performed. The default parameters can also be over-ridden
with subsequent calls to the gpib constructor by passing new values as parameters.

The following is a description of the service functions available once the GPIB module has
been included in the user's code. Data access and modification methods are available but are not
described because they are beyond the scope of this manual.

gpib(int ireqin, int dma in, int mad in, int cic.in, int nob in, unsigned int baO in, unsigned int
balin, voidfar *romnaddr in) - This is the initializer for class gpib. The parameters represent
the status of the user's system.

void getjparams(int &ireqout, int &dma out, int &mad out, int &cic-ou, int &nob.out, unsigned
int & baOout, unsigned int &bal out, void far* &rom addr out) - This function returns the data
members in the class gpib.

10

gpib ©(const gpib &gpibin) - This function copies one gpib class to another. Both classes
must be already created with the gpib constructor. The operator = is also overloaded to provide
the same service.

unsigned int init_gpibO - This function initializes the GPIB board for use and returns the error code.

unsigned int gpibcommand(const char *gpibcmd) - This function sends gpibcmd to the GPIB
board and returns the error code.

unsigned int device.command(const char *dev_cmd, const int dev_addr) - This function sends
dev cmd to the device with device address dev addr and returns the error code.

unsigned int devicequery(const int len, char *dev dat, const int dev.addr) - This function fills the
empty string dev dat of size len with data already waiting for it from device with address
dev addr. It returns the error code.

int error handler(const unsigned int flag, const gpib..dat &last cmd) - This function is usually called
directly after callgpib(...) is called. When an error occurs, this function outputs an error
description along with advice on how to correct the problem. The parameters are the flag which
callgpib(...) returned and the last command, last cmd, sent to the GPIB board. It returns 1 if the
program should terminate and 0 if the program should continue to execute. The user is
encouraged to change or add to the advice in this module as new solutions to errors are
discovered.

The following functions are not necessary but are provided for the convenience of the user.
They can all be implemented through the gpib.command(char *gpibcmd) function. For example,
to send the IEEE-488 command 'CLEAR 10,15N, which will reset devices 10 and 15, either of the
two methods can be used in client code to obtain the same result:

unsigned int flag = gpib-command(CLAR 10,15'); or
unsigned int flag = clear(NlO,15);

Similarly, each of the following functions can be implemented by one of the above two ways. For
clarity, each of the function names are identical to their Keithley Metrabyte IE-488 command
syntax except for abrtO. Abort is a reserved word so it could not be used. A more detailed
description of the following IE-488 commands can be found in the Keithley Metrabyte IE-488 GPIB
board manual.

unsigned int abrtO - This function aborts current command and returns the error code.

unsigned int clear(const char *devices) - This function clears the selected devices and returns the
error code.

unsigned int config(const char *options) - This function configures the GPIB board to the selected
options and returns the error code.

11

unsigned int enter(const char *device) - This function inputs data from the selected device into a data
string and returns the error code.

unsigned int eoi(const char *device) - This function sends a data byte on the selected device with
EOI asserted and returns the error code.

unsigned int local(const char *devices) - This function sets the selected devices to local mode and
returns the error code.

unsigned int lockoWut(const char *devices) - This function sets the selected device to local lockout and
returns the error code.

unsigned int oWtput(const char *devices) - This function outputs a string to the selected devices and
returns the error code.

unsigned int parpolO - This function reads the status bit message for parallel poll devices and returns
the error code.

unsigned int pasctl(const char *device) - This function passes control to the selected device and
returns the error code.

unsigned int ppconf(const char *device) - This function sets up a parallel poll for the selected device
and returns the error code.

unsigned in ppuncf(const char *device) - This function resets the parallel poll of the selected device
and returns the error code.

unsigned int remote(const char *devices) - This function sets the selected devices into remote mode
and returns the error code.

unsigned int request(const char *device) - This function requests service from active controller device

and returns the error code.

unsigned int rxctlO - This function returns control of the bus to the PC and returns the error code.

unsigned int status(const char *device) - This function reads a serial polled device status byte and
returns the error code.

unsigned int syscon(const char *parameters) - This function sets up the system configuration and
initialization of the GPIB board according to parameters and returns the error code.

unsigned int trigger(const char *devices) - This function sends a trigger message to the selected
devices and returns the error code.

12

TEKTRONIX MODULE

The Tektronix module was written to allow the user to control the Tektronix 2430A Digital
Oscilloscope through the GPIB. There are only a few functions needed for this module. All string
commands or queries may be sent through these functions. Other device modules can be coded
using this as an example of how to interface with the GPIB module. All device commands and
queries are passed through tek command(...) and tekquery(...). All the available functions are
explained below:

tek2430A(const gpib &board in, const int gpibaddr in) - This is the initializer for class tek2430A.
The parameters represent the initialized gpib board and the device's address.

unsigned int init.24300 - This function initializes the Tektronix oscilloscope for use and returns the
error code.

unsigned int tekcommand(const char *cmd) - This function sends the specified Tektronix command
to the oscilloscope and returns the error code.

char *stekquey(const char *query) - This function sends the specified Tektronix query to the
oscilloscope and returns the data in string format.

floatfekquey(const char *query) - This function sends the specified Tektronix query to the
oscilloscope and returns the data in floating point format.

int itek-query(const char *query) - This function sends the specified Tektronix query to the
oscilloscope and returns the data in integer format.

unsigned int capture.curve(const int num.pts, int *curve-out, const int ichannel) - This function
sends the curve query to the oscilloscope and stores the data from the specified channel into the
specified integer array, curveout of size num_pts. It returns the error code.

float teksample rateO - This function returns the time between successive data points on the
oscilloscope screen.

void converttovolts(const int num_pts, float *f curve, const int *i-curve) - This function converts
the integer curve array i curve into voltages and stores it in the float array f curve. The float
curve must be of size num.pts.

DISPLAY MODULE AND TEST PROGRAM

A portion of a display module is provided to enhance demonstration of the instrument
drivers. The header file display.h should be included in the program and display.cpp should be
compiled and linked with the client code. This module contains the following function:

13

int display_.curve(const int num pts, const float *dat, const float YAMP) - This function causes the
curve dat of num..ps to be displayed with a data amplification of YAMP. It returns 0 if executed
properly and I if not.

The test program gpibmaincpp initializes the GPIB board, the Tektronix oscilloscope,
performs several operations, acquires a curve, and graphically displays it. This program illustrates
the procedure for utilizing the modules correctly.

CONCLUSION

It has proven extremely beneficial to utilize the GPIB when interfacing laboratory
instrumentation. The GPIB extends capabilities over what is normally available with serial and
parallel ports. It provides a mechanism for both instrumentation control and data acquisition. Most
laboratory equipment provides GPIB support or an option to add it.

The instrument drivers discussed in this paper were modularly written in a layered fashion to
maximize portability and ease of understanding. Other modules can be plugged in to this software to
expand its use to other GPIB devices. As is, this driver can be used to acquire data from the
Tektronix 2430A digitizing oscilloscope. The data can be derived from any number of sources, such
as ultrasonic transducer data, electronic sensor output, analog/digital circuit output, etc. These
modules can be linked with other C or C + + code.

The instrument drivers worked very well with the test program. The oscilloscope was given
its workout, the curve displayed on the oscilloscope was acquired by the computer into an array, and
the graphics screen displayed the same curve shown on the oscilloscope. The source code for all the
modules are included in Appendix E. Figure 6 shows a curve as it is displayed on the oscilloscope,
and Figure 7 shows the same curve acquired through the GPIB and displayed on the computer with
the display module. Figure 8 shows a block diagram of the hardware setup of this test and Figure 9
shows a photograph of the entire system.

14

Figure 6. Curve Displayed on Oscilloscope.

Figure 7. Curve Displayed on Computer Graphics Screen.

15

h mi l l ill m mmlwlmmmlmm Imlm lmllIro l lllmmm I i ma Imlll m m i mA

PC P Tektronix PU.T.r

IBcp Receiver
9B

Transducer

Specimen

Figure 8. Block Diagram of Hardware Setup.

Figure 9. Photograph of Hardware Setup.

17

APPENDIX A

IEEEE498 PIN CONNECTIONS AND DIAGRAM

The pins can be classified into three groups (14):

1. DATA BUS
The pins labeled DIOI-DI08 make up the data bus. These lines are used to pass data,

commands, addresses, and status reports. The data is passed in a bit parallel, byte serial format.

2. DATA BYTE TRANSFER CONTROL
The three data byte transfer control lines are commonly referred to as the handshake bus.

The purpose of handshaking is to ensure that all the information that is transferred on the bus is
received by the proper device. The three lines are:

Not Ready For Data (NRFD) - This line is controlled by the devices that the
controller has designated as a listener. If a listener is ready for data transfer, the
devices line will be logically high. In order for the NRFD line to be high, all of
the active listeners' NRFD lines must be high. Because of this, the NRFD line
will operate at the speed of the slowest device.

Data Valid (DAV) - This line indicates that the data on the data bus is valid. The
device that is designated by the controller as the talker controls the status of this
line. This line will be set to low when the data is determined to be valid. This
alerts the listeners on the bus that they can now accept the data. In order for this
line to be activated low, the NRFD line must already be activated high.

No Data Accepted (NDAC) - This line is controlled by the devices that are
designated by the controller as listeners. As each device receives the data from
the bus, it sets its NDAC line to high. After all of the listeners have set their
NDAC line to high, the cable NDAC line will be set high.

3. GENERAL INTERFACE MANAGEMENT LINES
The general interface management lines are used to control the bus and to report the status of

select operations. The function of each line is described in the following:

Remote Enable (REN) - If this line is high, then the addressed device will be set to
REMOTE operation. If this line is low, the addressed device will be controlled
by the operator.

Attention (ATN) - This line will describe the information that is on the bus. If this
line is high, then the information is considered to be data. All of the devices
designated by the controller as listeners will receive data from the device
designated as a talker. If this line is low, then the information on the bus is
considered to be a command. All devices on the bus will receive commands.

18

End Or Identify (EOI) - This line works in conjunction with the ATN line. If both
the EOI line and the ATN line are high, then the controller will initiate a parallel
poll of the status of each device. If ATN is low and EOI is high, then the last
byte in a data message has been located.

Interface Clear (IFC) - If this line is high, then the bus will be set to an idle state.
This most often occurs when there is a problem.

Service Request (SRQ) - If this line is high, it indicates that the device that activated
it requests attention. As soon as the controller is free, it will let the calling device
perform its operation.

19

IEEE-488 PIN DIAGRAM (5)

D1l01 1 13 Dl05
D102 2 14 D106

D103 3 15 D107

EOI 4 16 D108

DAV 5 17 REN
NRFD 6 18 GND (TW PAIR W/DAV)NRD 7 19 GND (TW PAIR W/NRFD)
IFO 8 20 GND (TW PAIR W/NDAC)
IFC 9 21 GND (TW PAIR W/IFC)
SRQ 10 22 GND (TW PAIR W/SRQ)

ATN 11 23 GND (TW PAIR W/ATN)
SHIELD 12 24 SIGNAL GROUND

20

APPENDIX B

SUPPLEMENTAL GPIB HARDWARE (4)

As the GPIB interfacing system became more widely accepted, more tools were developed to
enhance its performance. The hardware listed here is not mandatory for a system that utilizes the
GPIB, but may enhance system performance.

1. GPIB MODEM
This modem will allow a device to be connected via a telephone line. However, because

modems transfer data bits serially, the transfer will be slow. Thus, a modem is not advisable for a
system that will make a large number of transfers. A major advantage of the use of a modem is that
the operator can be physically away from the system, with operation accomplished via telephone.

2. SERIAL TO GPIB CONVERTER
Currently, most computers come with a standard serial (RS-232) port, but not a GPIB (IEEE-

488). This converter will allow the serial port to be converted into a GPIB. An advantage of this is
that the converter eliminates the cable length restrictions placed on normal GPIB systems. Also, any
device with a serial port can be converted into a GPIB instrument. Devices that are connected to
this converter can be listeners or talkers, since the RS-232 is bi-directional. There will, however, be
a decrease in speed performance if this hardware is employed.

3. PARALLEL TO GPIB CONVERTER
This converter allows any unit with a parallel port to be used as a GPIB instrument. A

limitation to this device is that it must be used with listen only devices, since the parallel port is used
for output only.

4. EXPANDER
An expander is a device that will allow more than 15 devices to be connected to the GPIB.

There is, however, still a limit of 31 total devices which can be connected at one time. This occurs
because each device on the bus must have a unique address ranging from 0 to 30.

5. EXTENDER
An extender is a device that will allow devices to be distanced more than the recommended 2

meters. This can also be used to achieve greater electrical isolation and less data transmission errors
due to electrical interference.

6. DATA BUFFER
This device is used to improve the efficiency of the system. Usually the systems performance

is based on the performance of the slowest device. This problem is overcome by isolating the
slowest device on the bus through the use of a data buffer. This buffer will be connected to both the
slowest device and the interfaced system. The buffer will allow the slow device to perform its
operation, while the rest of the devices continue to perform theirs. An example of this is a system
that plots output. It often takes quite some time to accomplish this. Without a data buffer, the
whole system will be at a standstill until the plot is complete. With a buffer, the other devices can
perform their operations at the same time as the plotter, leading to significant performance
improvements.

21

APPENDIX C

KE1THLEY METRABYTE IE-488 ERROR FLAG CODES (8)

The error codes listed will be returned in the FLAG parameter of the GPIB call statement.
These codes can also be found in the Keithley Metrabyte IE-488 Manual.

DATA TRANSFER ERRORS
&HOOOO = Successful Transfer
&H0020 = No Input EOI or Line Feed
&H0030 = Device Timeout
&H0040 = Reserved
&H0050 = DMA Channel Busy
&H0060 = GPIB Busy

HARDWARE ERRORS
&H0100 = Hardware Failure
&H0200 = Time Out on Data Transfer
&H0300 = Device Not Active Controller
&H0400 = IBM PC Active Controller
&H0500 = System Not Initialized
&H0600 = Configuration Error

FORMAT ERRORS
&H1000 = Undefined Command
&HI 100 = Syntax Error in Command Line
&H2000 = Undefined Image
&H3000 = Device Range Error
&H3100 = Too Many Devices
&H3200 = Talker/Listener Conflict
&H4000 = Command/Data Out of Range
&H5000 = Command Requires Device
&H6000 = Undefined Device Code
&H7000 = Input Array not Initialized
&H9000 = IBM Must be Talker or Listener

22

APPENDIX D

KEITHLEY METRABYTE IE-488 INTERFACE COMMANDS (8)

The interpreter on the Keithley MetraByte IE-488 Interface Board implements all twelve
standard IEEE-488 messages. Sending the following messages to the IE-488 Board will effect the
appropriate pins in Appendix A.

1. DATA MESSAGE - Data information sent from the talker device to the listener devices.

2. TRIGGER MESSAGE - Causes the listener devices to perform a specific action.

3. CLEAR MESSAGE - Causes addressed devices to return to their predefined state.

4. REMOTE MESSAGE - Causes addressed devices to switch from panel to remote program
control.

5. LOCAL MESSAGE - Causes remote message to be cleared from addressed device.

6. LOCAL LOCKOUT MESSAGE - Prevents operator from manually returning to local control
from the panel.

7. CLEAR LOCKOUT MESSAGE - Clears all devices on the GPIB and sets to local mode.

8. SERVICE REQUEST MESSAGE - A device sends this to request service from the controller.
This is cleared by sending the device's Status Byte Message when it no longer requires service.

9. STATUS BYTE MESSAGE - A data byte which represents the status of the device on the bus.
Bit 6 is set if the device is sent a Service Request Message, and the remaining bits are specific to
the selected device.

10. STATUS BIT MESSAGE - A byte which represents the operational conditions of a group of
devices on the bus. Each bit represents a device on the bus. This is a response from Parallel Poll
Operation.

11. PASS CONTROL MESSAGE - Allows transfer of bus management duties to another device on
the bus.

12. ABORT MESSAGE - System controller takes unconditional control of the device from the active
controller. This message terminates communications with the bus and sends a Clear All Message.

23

APPENDIX E

SOURCE CODE

24

.Model MEDIUM

CALLGPIB.ASM

;Evolved from work of: Jeffrey Gruber, Motifs Graves, Andrew Kltump,
Patrick Sincebaugh, and Bradley M. Taber III

;For: U.S. Army Materials Technology Laboratory
Materials Testing and Evaluation Branch*

*Date: 31 March 1992

~This routine passes command and data string* through the GFIB board

.DATA

;Equate Statements
gpib ram addr ECU DUORO PTR (bplOJ1 ;GPIB RON Address
data- ECU WORD PTR Cbp81 ;device comumand or data
command ECU WORD PTR Cbp+62 ;GPIB com en
flag ECU WORD PTR Cbp-61 ;error flag
base ECU WORD PTR Cbp-83 ;address of board z 0

.CODE

PUBLIC -calLgpib
_callgpib PROC

push bp ;save base pointer
mOW bp, sp ;set up stack pointer
push di ;save data index
push si ;save source index
sub sp, 4 ;reserve space for Local variables

;flag and base

;for debugging purposes, omit 1;1 and monitor ax
;mov ax, command
;mov ax, data
;mov ax, Cbpo-1O1 ;gpib-rcm-addr
;mov ax, Ebp.12J ;gpib-rom-addr

xor ax, ax ;set axto 0
may flag, ax ;set flag to 0
may base, ax ;set base to 0

push command ; push command
push data ;Push data
may ax, bp ;get pointer to local variables
sub ax, 6 ;adjust to point to flag
push ax ;push flag
sub ax, 2 ;adjust to point to base
push ax ;push base

call gpib-rom-addr ;calt the OPIB RON

;After return from OPIB board, the pointers (command, data,
; flag, base) are off of the stack

POP ax ;get flag
*POP ax ;get flag, return it in ax register

POP si ; recover source index
POP di ;recover data index
POP bp ;recover base pointer
ret ;return to calling funmction

-callgpib ENOP
END

25

* GPIB.N

" Written by: Bradley N. Tabor III
" For: U.S. Army Mtoriats Technology Laboratory

* Mtrials Testing and Evaluation Brach
D ate: 6 April 1992

Include fil for use with GPiE commuications board

#Ifndef GPIBH
Osf ine GPIUHN

flnclude 'fstremmAh,

Uff ein. DEF IREQ 2 I/default GPIS board settings
Sdf ins DEF-DNA 3
Uef ins DEF-MAD 3
Sdef i no DEF CIC 1
tef ins DEF-NO 1
def ins DEFUBAO 300
Nef i ns DEF-A1 0
Idefi ne DEOfF-AVO HK-FP(OxC80,O000)

Odef ins 10 STE LEN 80 //default command length

//This is the dota aructure for comand and dota 1/0 with the GPIS board
class gpib-dat

private:
//Oats Meers

char length; //length of output string
char *dat-str; //pointer to string

public:
I/Constructors I Destructor

gpib-dst(const char *datstrjin); //constructors - cmnd
-gpib-det~const mnt size-in); II- data in
gplbdato; //destructor

I/Access I Modify
void set Iength~const char length-in);
char get length() const;-
void set dat~const char *dat str in);
void get dat~char *dat -str -out) const;
char get dat seeconst mnt index);

//Output
friend ostrein £operator-ccostrem £out-stresm,

const gpib-dat £gpib dat in);

//This class represents the GPIB board and all the necessary parameters
class gplb

private:
I/Data Members

mnt ireq;
i t dme;
int maed;
int cic;
mnt nob;
unsigned int baG;
unisigned mnt bul;
void far *romadd;

26

pubt i c:
I/Constructors

owibo;
gptb~int ireqin. tnt dmin, int md-in, tnt cic-in, int nobjn,

unsigned int beljn, unsigned int bljn, void far 'rcmLaddrJn);

//Access / Modify
void getpeainCnt At reqout, int £Wa-ut, int &mdaout,

int Scic out, tnt &rob-out, unsigned tnt &b*O out,
uigedi tnt Maelout, void far* &ram addr out);

gpfb &gpib::copy(const gpib Wgpbin);
qpib &gpib::operator - Cconst gpib &gptbifn);

10
/IGPIS board fumamn

unsigned tnt init-gpfbo;
unsigned tnt gpibccm-dRcanst char 'gpicmd);
unsigned int device-command~const char 'devyced, const tnt dev..addr);
unsigned int device _qary(const int ten, char 'dev-dat,

const int dev-addr);
tnt error hanidtor(const unsigned tnt f'Lain, conat gptb-dat &tast-cmd);
unsigned tnt abrto);
unsignied tnt ctear~const char *devices);
urasigned int config(const char 'options);
unsigned tnt enter~const char *device);
unsigned int eoi~const char *device);
unsigned tnt LocaL(const char *devices);
unsigned tnt Lockout~const char 'devices);
unsigned mnt output~const char *devices);
unsigned tnt parpot);
unsigned tnt paictt~conat char 'devices);
unsignd tnt ppconf~const char 'device);
unsignied tnt ppnf~const char *device);
unaigned tnt remote(const char 'devices);
unsigned tnt request~const char 'device);
unsigned tnt rxctto);
unsignied mnt status~const char 'device);
unsignied tnt syscon~const char *parameters);
unsigned tnt trfgger~const char 'devices);

//Asaebty twagag routine for commication with GPIS board
extern "C unsigned tnt calLgpib(const gpib-dat 'cod out, gpib-dat 'data in,

const void far 'rom-addr):

endi f //GPIU-H

27

* GP!B.CPP

*Written by: Bradley N. Tabor III
*For: U.S. Army Nterials Technology Laboratory

*Mtrials Testing anid Evaluation Branch
Date: 6 April 1992

Implementation file, for GPIB.H

#include qwsw~t.hv
#include -cconio.h~p
tincLuds <dos.h3,
OincLuds Ostrtm.h~o
#include 4stdtib.h>
#include <strirg.h>

SincLude gopib.hN

/..-
class gpibdcat a

P

//Constructor -- for string output only
intine gpib-dat::gpibdt~const char *dat-strjn)

length *strtan(dat str in);
dot-str anew chart~ength.1J;
asmart(dmt-str 1- 0);
strcpy~dtstr, dtstr in);

//Constructor -- for data input only
gpib-dst::gpib-dt~const mnt size in)

dst-str a now charisizein];
assort~dat str in 0);
for (register int c-0; c4size in; c++)

dat-str~c] a 1\01; //NULL
length a 0; //not used for input

//Destructor
inline gpib-dmt::-gpib-dt(

delete dtstr;

P --- I

//Set length
inline void qpib dst::set length(const char length in)

length a length in;

I/Get length
Inifne char qplb dst::@&tjIenth() const

return length;

I'---,

28

i/Set dot str
intine voTd gpib dat::setd¢at(cont char *dat-strjin)
C

strcpy(det str, dat strn);
)

i- ...;...............................*

//Get dat str
intline voTd qpibdat::get dat(char *cdt etrout) conat
C

strcp(dat etrout, datestr);
)

i*

//Get dat str etmnt
Intine char gpib.dt::get-dst-ee(const int index)
C

return datstrindex];
)

/* ...

//Output -- for output strings onty
ostrem Uoperator4C(ostream &out strem, const gpib-dat &Lpibdatin)
C

char ten - gitb cdat_in.getltnth);
char *str a new chartlenll;
assert(str In 0);
gpfb dati n.getdlt(str);
cout << win <<4 str << 40(< int(ten) << ""

delete str;
return out stream;

/*

/' ctlas gpib */
-... /

//Constructor
gpib: :gpib()
C

Iraq a 0;
dI a0;
mad a0;
€tc a 0;
nab - 0;
biO "0;
bel 0;
rm addr NK FP(OxOOOO,O000);

)

/* ... *

//Constructor
gpIb::gpib(int ireq n. tnt dam in, int mdin, int cic€_n, Int nab in,

unsigned tnt beOin, unsigned int bel_in, void far *romddr in)

Iraq a treq_|n;
dw a dIn;
mad a mdin;
etc a eic n;
nob a nob In;
O - beO In;

bei - belin;
ram addr a reml ddrIn;

I* ... *

29

//Get WPII Paramters
Inline void Sibs:get..pam(fnt lireqout, int Mmeaout, int Amdout.

int &Cec out, int kiabout, uaswird int abaooGut, ursined tnt Gbelout,
void forl &ram-adkiout)

I Peqait a I reaj
dwota d;

aCtcut a wd;
mbaj-Wt a nie;
b."a a nbA;

balout a bet;

1.-ala al

//Copy gpfb
Inline spib &Wib::cop(cnt splb lgplb-in)

ireq a wib n.ireq
do Wibin.dm;

and s pibin.und;
dC a gib-n.cic;
nab *gpib in.nob;

W a gpibtin.baO;
bel a pibin.bal;
rornd a~ s pibjin. rasadr;
return *this;

I/Overlood operator a
pib £gptb::operotor a (cornt gplb 8gpibjin)

if (this In Iwib in) return copy~gpib in);

I/InitialIze OPIS be rd
uwiwid tnt gplb::intgpb()

char crdIO$TlRLEMJ. temCIO03TLENI;

strepy(cmd, OSYSCOU NA'*00); //systm configuration, must be
itomand, top. 10); I/sent before any other c-nad
strcat(cad, top);

strcat(cnd, ",CICs\00);

streat(eed, top);

strcat(ced, 0,11W\00);

itoo(ob top, 10);
strcat(cmd. top);

strcat(cmd. top);~ 0)

itoe(bal. too, 10);
) tctcd o)

30'

gpib camndWcd);
gpibcmmn(TNE0UJT\O);
gpfb cammnd(ASOMT\");
riined int flag - gpib-commnd("CLEAW\0);
return flag;

M/end comow to OPtS board
unsigned int gpib::gpib-ccmmwid(const char 'gpibcud)

gplb dot cud out~gplb -cud);
gpibdat data out(l); //data out doesn't hold anything

//but pointer is still necessary

unsigned int flag a catLgpib(Icmd out, £dtaout, romaddr);
if (flag) error -hanidLer(ftag, cudout);
return flag;

I/Send coinond to device
unsigned fnt gpib: :devlce-commnd~const char 'dev-cmd,

canat int dev-addr)

char gplb cmdCIO STE LEN) x OUTPUT \00; i/must be sent f or
char day addr str 31;
ltoa(dwv.addr, dsvadrstr, 10);
strcat~gplb cud, dsv-addr-str); /device cman
strcat(spib cud, *[$] \On);

gplb -dot cud out(opib-cud), data-out(dev cud);
unsigned int flag a caltgpib(cmd out. "dta out, rom-addr);
if (flag) error -handter(flag, cod out);
return flag;

-- /

I/Get data f rom device
unsigned int gplb::deviceqary~const tnt ten, char* dsv-dmt,

conat int dsv-addr)

char gplb cudIlOSTE LENI a "ENTER \00; I/mast be sent for
char dsvaddrstr(3);
itoo~dsv addr. dsvaddrstr. 10);
strcat(gptib cod, deaddrWstr); //for device input
strcat(gplb cad, CS)R0");

gpib .dot cud out(opib cud), data InC len);
wisfied int flag - callgplb(&cmd out, "dta In. ram-addr);
if (flag) error handtor~fLag, cad out);

for (register int cuO; clen; c-)
dev-dattc) x data-ln.getdoate(c);

return flag;

/0---/

//Error handler
/* The user is encouraged to change or add to the advise wh~en solutions

to errors are discovered, This funct ion returns 0 if the program can
continue and 1 if the program should terminate. It is up to the user
to Imlemmnt a graceful termination If necessary. 0

31

int Wifb::error-handler(ccnst unsigned int flag in, ceut gpib.dst 9lastoemd)

If (ftlgin -s 0) return 0; i/get out if no error
int flag;

sosumd(SOO); detayclOG); //sounid alarm
sound(1000); detay(100);
sound(S00); delay(100);

carr 44c O*V*" OIS ERROR ***\n;
carl. o4 "IN COIIAD "4last cad cc#\o@
cerr 4'c "130 CODE" ftlLin <<$\o
switch (flagjfn)

cuse O:0020:
cerr <,4 NO INptjT E1 or LINE FEED~n";
cerr <4 "Advise: Check image termfnetor\n";
flaog a 0;
break;

case 0:0030:
cart vc "DEVICE TINE DUTWi;
cerr <4 "Advise: consult mruslt\n";
flag a 0;
break;

case 0:00W::
carr -4' "3ESE3VED~n-;
c~lrt g4 "Advise: consult wmunm i;
flag - 0;
break;

case OX0050:
cart 44 "DN CHANNEL IUSY~n";
cart " Advise: try again wihen cleartdn;
flag u0;
break;

Case OX0060:
cert << "GPIS BWSY~nu;
cerr '4 Advise: consult mumnun;
flaog a0;
break;

case 0:0100:
cart O NARDWARE FAILUREWi;
cerr ""Advise: check GPIS 1/0 addres\n"o;
flag a1;
break;

case 0:0200:
carr <g "TINE OUT ON DATA TRANSFER\n";
cerr <4 "Advise: check GPII cable connection, GPIS address, and\n";
cert 44 0 make sare device is onn;
fla t;-0
break;

case 0x0300:
cerr <,c "DEICE NOT ACTIVE CONTROLLER~i";
carr 4< "Advise: check device rwimer or make device active control ler\noo;
flag a 0;
break;

case OX0400:
carr 44 "1K ACTIVE CDNThOLLERVI";
cerr 44 "Advise: consult mmtwn;
fltag 0;

case 0:0500:
cart -4' "SYSTEM HOT INtTIALIZED~n";
ceir <4 "Advise: execute function initgpib() to initialize\n";
flag a 1;
break;

case 0:0600:
cert 'c4 "CONFIGURATION ERMOrvI";
cart -"- "Advise: check SYSCON... in initpibon;
fltag a 1;
break;

32

case OXIO0O:
cerr <, "UNDEFINED COMANiDW";
cor << "Advise: Use available comnd\nm;
flag a 0;
beak;

case OX1100:
ce,, 4< "SYNTAX ERROR IN COMM LINE\n";
cerr -c- "Advise: check cind syntax~n0;
flag 3 0;
broak;

case OO:
car << "UNDEFINED IMAWlEn";
ceirr 44 "Advise: consult aminuat\nw;
flag a 0;
break;

case WOOD0:
cerr <,4 "DEVICE RANGE ERRORW,"
cert << "Advise: make sure device numbers are within specified range~nu;
flag a 0;
break;

case 0x3100:
cerr <4 "TOO MANY DEVICES\n";
cerr << "Advise: consult sual\n";
flag a 0;
break;

case 0x32O0:
ceir << "TALKER/LISTENER CONFLICT\n";
cerr 44 "Advise: consult mnuaL\n";
flag a 0;
breok;

case 0x4000:
cerr <. "COMMN/DATA OUT OF RANGE~n";
cerr << "Advise: consult manual\n";
flog a 0;
broak;

case Ox5OOO:
corr c< HCOMAND REQUIRES DEVICE\n";
cent cc "Advise: execute command on specific device number~s)n;
flag a 0;
break;

case WOOD0:
corr 44 "UNDEFINED DEVICE CODE\n";
corr 4< "Advise: consult mafutalno;
flag a 0;
break;

case 0X7000:
cerr 44 *INPUT ARRAY NOT INITIALIZED\n";
cern <4 "Advise: consult mwnuat\n";
flag a 0;
brook;

case 0X9000:
corn <" "IONMUWST BE TALKER or LISTENER\n";
cern 4< "Advise: consult monuat\n";
flag X 0
break;

default:
corn 4< "UNDEFINED ERROR CWE~nw;
car << "Advise: consult amtijsl\n";
flag a 0;
break;

If (flag an 0) corr <4 "Program can continue~iN"
else cerr -c "Program should terminste\n";

ceir <- "HIT ANY KEY\n";
getcho);

return flag;

33

I'- .. .
* The following functions are not necessary for this driver but are
" provi ded as a convenience to the user.

//Abort
Wnine unsigned fnt gpfb::abrt()

unsigned int flag a gpib comndABORT\O");
return flag;

I'---I

//Clar devices
inline unsimned int gpib::clearlconst char *devices)

char cadIOSTE LEN] a "CLEAR \0";
strcat~cad, devices);
unsigned int fltag a gpib.coand(cmd);
return flags;

IlConfig GPIS
inline Lisigned int gptb::canflg~const char 'options)

char cad(IO -STE LEM] a "CONFIG \0;
strcat~cad. options);
uigned tnt flag a gpib-coadcu
return flag;

I'---I

/Inprut GPIS dota
inline unsigned tnt gpib::enter~const char 'device)

char cad~lO S7R-LEN] * ENTER \00;
strcat(cud, device);
unsignhd tnt flag a gpib~c-andcud);
return flag;

P --- I

M/end data byte with EOI asserted
inline unsigned int gpib::eoi~const char 'device)

char cod(JO.ST3.LEN] a OEOI \00;
strcat~cmd, device);
unsigned tnt flag a gpib-cm adcu)
return fltag;

I/Set selected devices
inine unsigned Int gpib::tocal~const char *devices)

char cmdCIO5TR LEN) a nLOCAL \0m;
strcat(cmd. devices);
unsigned tnt flag z gpib-coinndcmd);
return flaog;

I'---'

34

//Lockout selected devices
inline unsigned int gpib::Lockout(const char *devices)

char cud(IO STR LEN] x "LOCKOUT \0";
strcat(cad, devices);
unsigned int flag 3g gpib-commend~cmd);
return flag;

//Output string to selected devices
intine unsigned int gpib::output(couist char *devices)

char cudCIO STE LENI s "OUTPUT \ 0 0;
strcat(ced, devices);
unsigned int flag a gpib-commend(cmd);
return flag;

I'---I

I/Reads status bit message for parallel poll devices
inline unsigned mnt gpib::parpot()

unsigned int flag z gpib-command("PARPOL\O");
return flag;

I'---I

//Pass control to selected device
inline unsigned mnt gpib::pasctt(const char *device)

char cmdCIO STA LEN] z IIPASCTL \0O0;
strcat(cmd, device);
unsigned mnt flag a gpib-counand(cmd);
return flag;

I'---I

//Set up parallel poll
inline unsigned mnt gpib::ppconfcconst char 'device)

char cmdCIO STR LEN] a'IPPCONF \0O;
strcst(ced, device);
unsigned mnt flag - gpib-comand(cmd);
return flag;

I'---I

//Resets paralel poll
inline unsigned mnt gpib::ppuncf(const char 'device)

char cmd(iO STR LEN] a uPPUNCF \0";
strcat~cud, device);
unsigned mnt flag z gpib-cmisand(cmd);
return flag;

I'---I

//Sots selected devices to go into remote
inine unsigned mnt gpib::remote(const char 'devices)

char cmd(IO STR LEN] a "REMOTE \O";
strcat(cad, devices);
unsigned mnt flaog 2 gpib-command(cmd);
return flag;

35

/'

//Requests service frau active controller
inline unsigned Int gpib::request~const char *device)

char cmdEIO STR LEM] a "REQUEST \ON;
strcat~cmd, device);
unsigned int flag x gplb-comaid~cud);
return flag;

P ---'

//Returns control of the bus to the PC
inine umsifled Int gpib::rxctto)

unsigned int flag a gpib-comadC"RXCTL\O");
return flag;

//Reads serial polled device status byte
inline unsigned tnt gpib::status~const char 'device)

char cadIO STR LEM] a "STATUS \ON;
strcat~cmd, device);
unsigned tnt flag a gpibcoand(cud);
return flag;

PI---'

.,'ets up system configuration and initialization of GPIS

.mer unsigned tnt gpfb::syscon~const char 'parameters)

char cmd(10 STR LEN] a "SYSCON \O";
strcat(cmd, Paramters);
unsigned tnt flag x gpib-comand(cmd);
return flag;

I/Sends trigger message to selected devices
Wnine unsigned tnt gpib::trigger~const char 'devices)

char cmd(IO STEM aE] "TRIGGER \ON;
strcat~cud, devices);
unsigned int flag a gpib-cofmnd(cmd);
return f lag;

I'---'

36

* TEK2I.30A.H

* Written by: Bradley M. Taber III
* For: U.S. Army Materials Technology Laboratory

*Materials Testing and Evaluation Branch
'Date: 6 April 1992

'Include file for use with Tektronix 2430A Oscilloscope

#1 fndef TEK243OA-H
Odefine TEX243OA-H

Odefine MAX PTS 1024 //Mtaxis.m niabor of points

fdeflne DEF GPIB-ADDR 15 //Tektronix GPIB addrebs,
Ilrange(O-30), make unique
I/max data points f or curve

class tek2430A

private:
//Data Members

gpib board;
int gpib-addr;

public:
//Constructor

tek243OA(const gpib ftoard-in * conat Int gpib addr in DEF-GPIB-ADOR);

//Initialize Tek 2430A Scope
unsigned mnt teki nito;

//Access / Modify
void set board(const gpib &board-in);
gpib get boardo);
void set gpib addr(const mnt gpib addr in);
int get gpi) addro;

//Device Input I Output
unsigned tnt tek-command~const char 'cmd);
char '5 tekquery(const char *query);
float f tekquery(const char 'query);
tnt i tekquery~const char 'query);
unsigned mnt capture-curve~const mnt numnpts, tnt 'curve-out,

const int i-cha'rel);
float teksamplerateo;

I/Conversion
void convert-to-voLts(contst mnt num~pts, float 'f-curve,

const mnt 'i-curve);

Oendlf IITEK2430AHN

37

* TEK2430A.CPP

Written by: Bradley H. Taber III
*For: U.S. Army Materials Technology Laboratory

* Materials Testing and Evaluation Branch
'Date: 6 April 1992

Implemmntation file for TEK2430A.H

#include <ctype.h>
#lnciude tstdlib.h>
#include 4string.h>

#include Ngpib.h"
tincLude Ntek243OahN

/*---'

//Constructor
tek2.30A: :tek243OA(const gpib &board-in, comst int gpibmoddr-in)

gpib -addr a gpib -addr -in;
board a board-in;

/*---*

//nitialize Tektronix 2430A Oscilloscope
unsigned mnt tek243OA::tek-init0)

//N4andatory
board.device commandC"ROS OFF\O", gpib addr);
board.device~c comanCNIT SRQO". gpib-addr);

//Optional -- defaults scope for whole digitized curve, can be changed
/1 with subsequent comamnds

board.device comnandC'PATH OFFOO, upib addr);
board.device counandQSTART 1\00, gpiba;ddr);

char cmdCIO-STR-LENJ z "STOP \ON;
char pointsC7l;
Itoe(MAXPTS, points, 10);
strcat~cud, points);
unsigned mnt flag = board.devicecovand(cmd, gpib..addr);

return flag;

I'---I

I/Set GPIS board
inline void tek243OA::set-board~const gpib &board-in)

board a board In;

/*---*

I/Get GPI3 board
Inine gpib tek243OA::get-boardo)

return board;

/*---*

//Set gp b addr
Inine void tek243OA::setgpib-addr(const int gpib-addrjin)

gplb-addr a gpibaddrin;

38

//Got gpibaddr
intine int tek243OA::gtgibaddr(

return gpibaddr;

* -- I

//SA'id cin to scope
unsigned int tek243A::tekcosmnd(const char 'cud)

* unsigned Int flag a board.device-comnd~cud, gplbadr);
return fltag;

//Send query to scope, return string data
inline char 'tek243OA::s tek;query(const char *query)

char 'daeain a new charclO -STE LEM);
board.devfcocomwmd(query, gpib-addr);-
board.devicequeryC1O-STR-LEN, deta~in, gpib-addr);
return(data in);

/*---I

I/Send query to scope, return float data
float te*U43OA::f tekquery~const char *query)

char data in(lO STE LEMI;
board.devicecommnid~query, gpi baddr);
board~devicequeryCJO-STE-LEM, datan, gpib-addr);

register tnt c * 0; I/put pointer to correct place
while (Iisdigit~data tn~cl)) c++;
if ((c In 0) "I (data In~c-11 -. 1-9) c--;

return~atofC&Cdata-in~cj))); //convert to float

I/Send query to scope, return integer data
int tek2l.3QA: i..tekquery~const char *query)

char data inCIO STR LEM);
board.devlcecind(query, gpib addr);
board.device queryCIO-STEJ.EN. data in, gpib-addr);

register tnt c a 0; I/put pointer to correct place
while lisdigit~deta Intcl)) c-.;
fC(c In 0) "& (data in~c-11 an 1-1)) C--;

return(atot(L(dmtatIn~cj)); I/convert to integer

/*---'

I/Capture integer curve from scope
unsigned tnt tek243OA::capture-curvo~const tnt nhmjpts, int 'curve-out,

canst int i channel)

if (nmpts > NAX-PTS) return 1;
char 'deta-in - new chartMAXFTS+61; I/scope sends extra bytes
char cmdIO S7R-L!N3 a "DATA SOJMCE:CH\00;
char chanel 3,
Itoa~fi charoel, channel, 10);
strcat~cud, channel);

39

board.dsvcecanr cd gpi b-addr);
board.dsvice comand(PATH 0FFR0*, gpib-addr);
boerd.deviceconnd(STAT 1\0m, gpibsaddr);

strcpy~cd, OSTOP \On);
char pointsC7l;
itoCNAXyTS, points, 10);
strcat(cud, points);
board.devc,dcu cd, gib-addr);

board.dsviceooand(OATA ENcDG:RIIMYO gpib-addr);
board.davice commsnd(OJRVE?\O*. gpib addr);
wisigned inmts a board.dsvice.queryC(NAXPTS46), datafn, gpib-addr);

for (register int c=0; c~nmpts; c++) //cost to integer and
curveout~c] a data-in~c+31; //skip extra bytes

delete dot&ain;
return f Lag

//Get float voltage amlitude from integer aWtitude
void tek2430A::covrtto-volts(carst int rumpts, float *fcurve,

conet fnt *icurve)

float yoff zf tekqery"FMPE? Y0FFMO");
float yuat * f takquery(NFRE? Y14ULT\O0);

for (register int cw0; c<nampts; c-+)
f-curvec] - Ci-curve~c] - yoff) * ymuLt; //conversion algoritha

I/Return saqpl rate of current signal
float tek2l.3OA::teks~vlerate()

int nuindivisions z 20;
if (stkqury(tIOIZONTAL? N0DE00)C0J an W')

return f tekqueryHORZOTAL? ASECDIV00)/CMAXPTS/rmm.divi clans);
if Cstek ery(-ORIZNTAL? N0DE00)C03 - 191)

return f tekqeryHOR IZOSITAL? ISECO IVNO)/(NAX PTS/nm~di visions);
return 0;

/*...l

40

* OSPLAY.H *

" Written by: Bradley N. Tabor III
* For: U.S. Army Materials Technology Laboratory *

* Materials Testing and Evaluation Branch *
* Date: 6 April 1992 *

* Include file to use screen I/0 function on curves *

Oifndef DISPLAY N
Nef Ine DISPLAYN

//Screen Output
int displaycurve(ccnst int nupts, const float *dat, const float YAMP);

fendif // DISPLAY H

41

* ODISPLAY.CPP

Written by,. Sradley N. Tbr III
*For: U.S. ArwV Mtrisls Technology Laboratory

* Mterists Testing and Evaluatian Branch
* kte: -ApritI 199- -- - --2o e-- - - -- - -

Islementation ft* for DIUPLAT.N

#include tconio.h2-
fincluds cfetre.k,
finclude 4graphlcs.hv,
fincludo fstdlo.h~l
Olnclude <stdtfb.h2,

finclude wdisptay.h"

Ilsraphlcatly display curve,
int display curve(corst int numapts, Conot float *dot, const float r AMP)

int grphdrvr u DETECT, gods, errorcod.;
lnitgraph(&grphd0rvr, &gode, ")
*rrorcode a graphresutto;
if (orrorcods in grOk)

Carr -("Graphics Error: " 4< grapherrorw(errorcode) <, (nl

Carr - "Press any key to terminate:";
getcho;
ex t(1);

setbkcolor(ULUE);
setcotor(YELLOW);
cteardsviceO);
outtextxy(S, 20, "Display of digitized waveform:0);

for (int cuO; c~mnpts; c-) IIscale and draw

float x a (flost~c) * (ftoat(640)-ftoat(O))) / flost~nhm~pts);
float y - 240 - Cdat~c] * AM)
if (cuaG) moveto(x~y);
elsa llneto(x~y);

outtextxy(215, 4.55, "<HIT ANY KEY TO CONTINUJE>");
getcho;
ctoegrapho);
return 0;

42

* GPIBNAIN.CPP

Written by: Bradley H. Taber M!
*For: U.S. Army Materials Technology Laboratory

* Materials Testing and Evaluation Branch
'Date: 6 April 199

* ' ~Test program for GPtS data acquisition mod.ales

flnclude <conlo.h,
include <dos.h3
#include 4fstrem.h)

#include ngpib.hm
#include "tek243Oa.h"
#include Ndisptay.hn

//define ofil cout //output to screen
ofstrem ofitcNgpibsein.aut"); //Output to file

clrsero;

//Initial ization
gpib gpibl(DEF IREQ. OEF -NA, DEFM- AD, DEF-CIC, DEF.NOS.

DEFAO, DEF AI, DEF RON *001);
ofil <7 Ninitgpibo) flag a " c< gpibl.initg9pibo - 'no

tek243OA scope~inpibi. 15);
ofil 4' "tek init() flag a N c scope.tek..inito) <4'\

cout <4 "'nSet up scope and hit any key to cont inue\n\nm;
getcho;

/*--*
* Tektronix Workout

ofil c "bell flag a c< scope.tkconad(OKLL\Ow) -4 n'
ofil t-'C oomessage fla 1 o a

4- scape.tek coinmnd(ESSAGE 4: \NTHIS IS LIKE 4\0\00) c<\o
ofif I "message Irla. 2 a*

Sscope.tektcoinnCNMESSAGE 14: \"THIS IS LINE 14\'\Ou) - '\;

//Queries
ofil 4< *double vmin * " " scope.f tek~qery(*VINILUi7\O") c<'\o
ofil <, "double vmsx x " -'- scope.f tek.query"VM4AXINIJN\O") <, In'
ofil -' Ndouble volts/div - N <, scope.f-tekqeryC"CH1? VOLTS\O") -cc\o

ofil 44 Nit min a N 4 scope.i tek-query('MININWI7?\Om) - '\no;
ofil < "mt mx a 0 t< scope. i tek~qury("M4AXINIM?\Om) <'\n
ofil 4 mt start z " < scopeJi tekqryo"START?\ON) <4 '\no;
ofil < mt stop a 0 < scope.i tek~qaeryC"STOP?\ON) c4'\o

ofil <, "string voinimum a 0 cA scope. s..tekquery(V14INIW.M\OW0) '\no
ofil c- "string vamsxfin~ a 0 " scope. stkquery"~AIU1M?\O") $\o
ofil vc "string volts a N - scope.s-tkqry"CN1?\OM) -" \4

ofit <4 "string id a 0 scope.stejpqery(ION) <" \o

//Data Acquisition
mnt 'i curve = new intDMAXPTS);
scope.capturecurve(M4AXPTS, i 1curve, 1);
float lof curve a new float CHAXPTSJ;
scope.caonvert to vol ts(MAXPTS, f curve, i-curve);
delete I curve;

43

Ilraphlcat Output to Scrn
cout c *\nmi t ow key to dieptay grsphs\n;
setcho;

tnt nmmpts a 1024;
Int iu AM 40;
dfup;Vycurve(niinpts, f-curwe, %AMP);

444

OUTPUT:

it gpilb) flag 0
teicTnitc) flag a 0
be((ftag a 0
iMssage flag 1 a 0
message ftag 2 - 0
doubts rwin a -1.8
doubl vwx a 1.88
doubtes votts/div a 1
fnt min - -45
int max a 49
int start 1
tnt stop a 1024
string vmni a -1.a8
string vminimun a 1.800
string votts a 1,0,O,ACOFF,OFF
string id a TEK/2430A,V81.1,2 -SEP-87 V1.90 /1.4"

45

BIBLIOGRAPHY

1. 2430A Prorammers Reference Guide, Tektronix Publication #070-6338-00.
Beaverton, OR: Tektronix Inc., 1988.

2. Atkinson, Lee, Atkinson, Mark. Using Borland C+ +. Carmel, IN: QUE, 1991.

3. Borland C++ Programmer's Guide. Scotts Valley, CA: Borland International Inc.,
1991.

4. Caristi, Anthony, J.. IEEE-488 General Purpose Instrument Bus Manual.
San Diego, CA: Academic Press, Inc., 1989.

5. Data Acquisition & Control, KEITHLEY METRABYTE/ASYST/DAC Volume 24.
1991.

6. Dewhurst, Stephen C., Stark Kathy T.. Programming in C + +. Englewood Cliffs,

NJ: Prentice Hall, 1989.

7. IBM Technical Reference Manual. Boca Raton, FL: IBM Corp., 1984.

8. IE488Mna. Taunton, MA: Metrabyte Corporation, 1984.

9. IEEE Standard Digital Interface for Programmable Instrumentation, ANSI/IEEE
Std. 488-1978, IEEE. New York, NY 1978.

10. Lippman, Stanley. C+ + Primer. Reading, MA: Addison Wesley Publishing
Company, 1991.

11. Model, Mitchell L.. Data Structures. Data Abstraction. Draft 2, 1991.

12. Schildt, Herbert. C: The Complete Reference. Berkeley, CA: Osborne
McGraw-Hill, 1987.

13. Silberschatz, Abraham, Peterson, James L., Galvin, Peter B.. Qperating System
CoMQ s. Reading, MA: Addison-Wesley Publishing Company, 1991.

14. Stover, Allan. ATE: Automatic Test Equipment. New York, NY: McGraw-Hill
Company, 1984.

15. Turbo Assembler User's Guide. Scotts Valley, CA: Borland International Inc.,
1990.

46

DISTRIBUTION LIST

No. of
Copies To

I Office of the Under Secretary of Defense for Research and Engineering,
The Pentagon, Washington, DC 20301

Commander, U.S. Army Laboratory Command, 2800 Powder Mill Road, Adelphi,
MD 20783-1145

1 ATTN: AMSLC-IM-TL
1 AMSLC-CT

Commander, Defense Technical Information Center, Cameron Station, Building 5,
5010 Duke Street, Alexandria, VA 22304-6145

2 ATTN: DTIC-FOAC

I MIAC/CINDAS, Purdue University, 2595 Yeager Road, West Lafayette,
IN 47905

Commander, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709-2211

1 ATTN: Information Processing Office

Commander, U.S. Army Materiel Command, 5001 Eisenhower Avenue,
Alexandria, VA 22333

1 ATTN: AMCSCI

Commander, U.S. Army Materiel Systems Analysis Activity,
Aberdeen Proving Ground, MD 21005

1 ATTN: AMXSY-MP, H. Cohen

Commander, U.S. Army Missile Command, Redstone Scientific Information Center,
Redstone Arsenal, AL 35898-5241

1 ATTN: AI4SMI-RO-CS-R/Doc
1 AIMSMI-RLM

Commander, U.S. Army Armament, Munitions and Chemical Command, Dover, NJ 07801
1 ATTN: Technical Library

Commander, U.S. Army Natick Research, Development and Engineering Center,
Natick, MA 01760-5010

1 ATTN: Technical Library

Commander, U.S. Army Satellite Communications Agency, Fort Monmouth, NJ 07703
1 ATTN: Technical Document Center

Commander, U.S. Army Tank-Automotive Command, Warren, MI 48397-5000
1 ATTN: AMSTA-ZSK
1 AMSTA-TSL, Technical Library

Commander, White Sands Missile Range, NM 88002
1 ATTN: STEWS-WS-VT

President, Airborne, Electronics and Special Warfare Board, Fort Bragg,
NC 28307

1 ATTN: Library

Director, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground,
MO 21005

1 ATTN: SLCBR-TSB-S (STINFO)

Commander, Ougway Proving Ground, Dugway, UT 84022
1 ATTN: Technical Library, Technical Information Division

Commander, Harry Diamond Laboratories, 2800 Powder Mill Road, Adeiphi, MD 20783
1 ATTN: Technical Information Office

Director, genet Weapons Laboratory, LCWSL, USA AMCCOM, Watervliet, NY 12189
1 ATTN: AMSMC-LCB-TL
1 AM4SMC-LCB-R
1 AMSMC-LCB-RM
I AMSNC-LCB-RP

Commander, U.S. Army Foreign Science and Technology Center, 220 7th Street, N.E.,
Charlottesville, VA 22901-5396

3 ATTN: AIFRTC, Applied Technologies Branch, Gerald Schlesinger

1 Plastics Technical Evaluation Center, (PLASTEC), ARDEC, Bldg. 355N,
Picatinny Arsenal, NJ 07806-5000

Commander, U.S. Army Aeromedical Research Unit, P.O. Box 577, Fort Rucker,
AL 36360

1 ATTN: Technical Library

No. of
Copies To

Commander, U.S. Army Aviation Systems Command, Aviation Research and Technology
Activity, Aviation Applied Technology Directorate, Fort Eustis, VA 23604-5577

1 ATTN: SAVOL-E-MOS

U.S. Army Aviation Training Library, Fort Rucker, AL 36360
1 ATTN: Building 5906-5907

Comuander, U.S. Army Agency for Aviation Safety, Fort Rucker, AL 36362
I ATTN: Technical Library

Commander, USACOC Air Defense Agency, Fort Bliss, TX 79916
1 ATTN: Technical Library 4

I Clarke Engineer School Library, 3202 Nebraska Ave. North, Ft. Leonard Wood,
NO 65473-5000

Commander, U.S. Army Engineer Waterways Experiment Station, P. 0. Box 631,
Vicksburg, MS 39180

I ATTN: Research Center Library

Commandant, U.S. Army Quartermaster School, Fort Lee, VA 23801
1 ATTN: Quartermaster School Library

Naval Research Laboratory, Washington, DC 20375
1 ATTN: Code 5830
1 Dr. G. R. Yoder - Code 6384

Chief of Naval Research, Arlington, VA 22217
1 ATTN: Code 471

1 Edward J. Morrissey, WRDC/MLTE, Wright-Patterson Air Force, Base, OH 45433-6523

Comuander, U.S. Air Force Wright Research & Development Center,
Wright-Patterson Air Force Base, OH 45433-6523

I ATTN: WROC/MLLP, M. Forney, Jr.
1 WROC/MLBC, Mr. Stanley Schulman

NASA - Marshall Space Flight Center. MSFC, AL 35812
1 ATTN: Mr. Paul Schuerer/EHO

U.S. Department of Commerce, National Institute of Standards and Technology,
Gaithersburg, M0 20899

1 ATTN: Stephen M. Hsu, Chief, Ceramics Division, Institute for Materials
Science and Engineering

1 Committee on Marine Structures, Marine Board, National Research Council,
2101 Constitution Ave., N.W., Washington, DC 20418

1 Librarian, Materials Sciences Corporation, 930 Harvest Drive, Suite 300,

Blue Bell, PA 19422

1 The Charles Stark Draper Laboratory, 68 Albany Street, Cambridge, MA 02139

Wyman-Gordon Company, Worcester, MA 01601
I ATTN: Technical Library

General Dynamics, Convair Aerospace Division, P.O. Box 748, Fort Worth,
TX 76101

I ATTI: Mfg. Engineering Technical Library

1 Department of the Army, Aerostructures Directorate, MS-266, U.S. Army Aviation
R&T Activity - AVSCOM, Langley Research Center, Hampton, VA 23665-5225

1 NASA - Langley Research Center, Hampton, VA 23665-5225

I U.S. Army Propulsion Directorate, NASA Lewis Research Center, 2100 Brookpark
Road, Cleveland, OH 44135-3191

1 NASA - Lewis Research Center, 2100 Brookpark Road, Cleveland, OH 44135-3191

Director, U.S. Army Materials Technology Laboratory, Watertown, MA 02172-0001
2 ATTN: SLCMT-T4L
2- Authors

0-C C
=I C-C -A 0 - -~ - -. tL

- CC Ce.C .C C-.) LI C-C - C

C 1 CC aso. . CI .. . ~
CCCC~C - CL C~ L C.. ~

- E5Z C I W

aC= 01 ,5 0 C) c, CC~ -,_ MC C
CC)C)1C.C C I c C

- I.IC) C 1CC 021C-LSC0

2R C C C- Ca

c 4C ..) C)C=C LLC.1C & o- - IIC .5.c w r)-A- C
-- ~ tz 4.7 0)C C~ CQC8= 1C-) *C.. LJLw C.LCIC

4,- Cya CC

=~~' wC vC' C CCAC C)- Z Cc C-C .'LC .CL C m CLC
c04 1~C C Cc w) C)cCC C C

LIC: C=L E C aE!6 CC-= C .
.hh4, C)CC)C

A. 4" c- - C- A-- w 04~v.- Cc- CC0C) _

Cr0 C)I- CC C I C- -,)C. 0 ~
ccC -E C) -0 cL c

0- 1 -1CCC,. SOCC 21 w o- C)o

'A) C- -- .- 0 ILCC cCC--I C CC

W.0 o-Cw.GCC wCCcCI
C nLt 011C CA C- Ct, Ceo C C C)C C

C WeI 1, C-l.. I %CC tCw
W=C) C)Z- CCC I z a, CLCC)C

CC 2 a, -C Ce,0-cc I CC) haC w ICC M*Z,.0CCc 1

Cc .I-0 cc L- CC'O r~. 1 r- 0

-a C') 'C .C C C- C -L CCV - Z -. 0.C C '

-C CL... C 4-C -LS I C1 CU ... cCW .-CC0 CC

- C L1C1 ?1,;. 3- W11 ~ C C L C C

1 CCC CV -v Mo. - LC C- - - - - *o o LC, L
- ~ -, 4wC Z wVC C CC , C cIO I C C E

a~Z0 mmIC) Ca .. C C.CC -CC S =)

2c tC tC -.I.C C CC"- I Cw m C'a.C V wC

C--.C CEC 35 wC . _W CCC a~C C'CC CC
1 0

1
a X=~C Ca--w-0

-C c C C C C CL CCN .4 CA' W-01 0~ aCC- 61 C A - C) 3

SCC 0 X .CC,. =. zC C: CV,. - - 7. CC C g L C)-CZ.r
AC - 0A -C . C LCCCACCE -2 CE IS C z-C DC

=C w Ct C c _ CC C)) C-. C -L ' . - CLI wC C cCpc M6;L
. 6S.t ft c! wC CL aC "W 2C C -a.2 a -

C Cc tL*:C=wA 91s g-C a 6 ,C C I C,0 CL, ICC ~ I C C C C C
'D0~0 C-C 53 7, c C, wISL

WITC C) 0C0 aC tC) c I E-,.- -C. C CC- Ia C U LCC=~~E1 ~:~= -C cC C- CD W- 6C-C 6~'V * C CCaC CI

.0 mCA-C)CvICCC C v '-

C, 0 C 2 "LC C, I le C9 C 1 C Z
C cC *; C *-C - 1 ,C= - I ,!-s

- C), mmA OV--CC C C C. LI C -

- C CCC- L. CC C, - C, CCC 0 C C- -0
- w- C C - C C C CCC C C

a:; C 014.0 aCC 1 C C 0a C, CIW 0 -C01W £ CC

-. C0 C, CC

410~ ~ CC -3 C. CMC.CC C a, VI. C - L C0C .5-C

